Three of Europe’s most talented researchers presented as Swedish Foundations’ Starting Grant Fellows 2017

Department of Chemistry and Chemical Engineering, Chalmers University of Technology
Funded by: Familjen Erling-Perssons stiftelse
Imagine that you would measure the average eye colour of the population in Sweden. Clearly it would not say much about the colours of the eyes of the inhabitants. To acquire this information one must of course study them individually. The same holds true for complex biological molecules, especially proteins, which may exist in many different subpopulations that cannot be resolved in an ensemble measurement. Heterogeneities in biomolecular structure and function limit our understanding of biology and to advance further it is vital to be able to study single biomolecules. For proteins this is highly challenging since it must be done in a non-invasive manner, preferably while keeping them free in solution under physiological conditions.

The SIMONANO project (Single Molecule Analysis in Nanoscale Reaction Chambers) aims to develop new platforms for single protein analysis which provide essential advantages. Molecules will be entrapped in gated nanoscale reaction chambers, thereby eliminating the need of field gradient forces or surface immobilization. Further, the molecules can be entrapped at physiological ionic strength, pH and temperature. Most importantly, because the gates to the reaction chambers can be individually controlled and allow liquid to pass, it will be possible to lure molecules into the chambers by hydrodynamic forces. This should make it possible to not only entrap but also to mix individual molecules with each other. Advanced fluorescence microscopy will be used to detect the proteins and their reactions.

The impact of being able to study individual proteins and even protein pairs in a reliable non-invasive manner opens up for great scientific advancements in life science. Once developed and evaluated in this project, it can be envisioned how the nanoscale reaction chambers are distributed to and used by molecular biologists worldwide, which will greatly contribute to advancing our understanding of life on the molecular level. This will, in turn, lead to improved applications in biotechnology and medicine.

Department of Mathematics, Uppsala University
Funded by: Ragnar Söderberg foundation
My focus is on random graphs, a research area in the intersection between probability theory and combinatorics. This is one of the most dynamic fields in mathematics with many interesting “pure” mathematical questions as well as important applications in e.g. computer science, physics, bioinformatics and communication reliability (e.g. the Internet). Random graphs are graphs generated by random processes describing how the vertices are connected to each other through edges. I have a special interest in random trees. Trees are connected graphs without cycles, and random trees have become an increasingly hot area due not least to their importance for algorithms in computer science.
My goal is to advance the field of random graphs, especially random trees. By introducing novel methods into the field, alone and in combinations, and using these methods I aim to obtain general results valid for whole classes of random graphs. A special ambition is to combine probabilistic methods, such as Pólya urns, branching processes, Stein’s method with couplings, and renewal theory with innovative combinatorial approaches to solve important problems.
Three main topics will be addressed:
1. Random trees, with a focus on the study of fringe trees as a novel approach to obtain general results for whole classes of random trees;
2. Percolation theory, especially bootstrap percolation, for studies of mathematical “infectiosity” in graph networks (with broad applications in e.g. physics, biology and epidemiology); and
3. Random networks, specifically (i) the configuration model (an important random network model due to its proven usefulness for studying various real world networks in e.g. biology and sociology); (ii) CTM protocols (commonly used to avoid collisions in e.g. radio, electricity and internet communications); and (iii) stochastic block models (that have become increasingly important in biological and sociological research on community interactions).

Department of Physics, Lund University
Funded by: Stiftelsen Olle Engkvist byggmästare
In this project I will develop ultra-high resolution X-ray detectors based on semiconductor nanowires, whose spatial resolution will be radically better than the current state of the art. In X-ray detectors the primary X-ray absorption induces a cascade of secondary electrons and photons, which are measured at the front or back of the detector, but during the long transport to the point of detection these can spread orthogonally to the optical axis. This limits the resolution in present bulk detectors.

My novel concept is to create a nanostructured detector based on an array of semiconductor nanowires, which will confine and physically prevent spreading of the secondary electrons and photons. In a nanowire array, the pixel size is the diameter of the nanowire, which can be as low as 10 nm, while the nanowires can be as long as the X-ray absorption length. The very high aspect ratio of nanowires allows detectors with simultaneously very high spatial resolution and sensitivity. I will investigate both direct detectors and scintillators, in which the secondary electrons and photons are detected, respectively.

The objective is to create detectors based on arrays of 10 nm-diameter nanowires. Imaging experiments will compare these two types with each other and with commercial detectors. Time- and temperature resolved measurements will be used to improve understanding of the X-ray physics in these nanodevices, with strong quantum confinement of electrons and phonons and high surface to volume ratio. This novel detector concept can be used for high-resolution imaging of samples on the nanoscale, maintaining the unique ability of X-rays to study samples in realistic conditions: DNA within live cells, the strained channel in single operational transistors or individual nanoparticles in a charging battery. High resolution detectors could also be employed in X-ray spectroscopy and diffraction.

Two of Europe’s most talented researchers presented as Swedish Foundations’ Starting Grant Fellows 2016

Division of Molecular Hematology, Lund University
Funded by: Familjen Erling-Perssons stiftelse
This proposal aims to unravel a completely new facet of gene expression governed by RNA pseudouridylation (Ψ), the most abundant single nucleoside RNA modification in living organisms, which directly impacts the stem cell transcriptome during normal and malignant hematopoiesis. Importantly, RNA modification is newly emerging as a key mechanism to coordinate gene expression in stem cells. Recent data show that Ψ modifications are dynamic and widespread among RNAs in cells and tissues, suggesting that Ψ may rapidly rewire a cell’s transcriptome. This proposal will be transformative in hematopoietic research by defining for the first time a new RNA-pseudouridylation ‘code’ that drives distinct genetic programs in stem and cancer cells.

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
Funded by: Ragnar Söderberg foundation
I will use novel genome-wide approaches to investigate the transcriptional basis of the non-genetic heterogeneity driving divergent gene expression responses within a clonal population using S. cerevisiae. This research has a dual objective: 1) to refine our knowledge of translation regulation and its contribution to cell-to-cell variability, and 2) to develop novel genome-wide approaches to functionally characterize and assign molecular and cellular phenotypes to subtle variations of the transcriptome. These approaches will be complemented by analysing the molecular phenotypes of the mRNA isoforms (e.g., association to ribosomes or RNA binding proteins). This will allow linkage of molecular phenotypes with cellular consequences, and highlight those variations with higher functional potential. Once I identify novel mechanisms implicated in the appearance of phenotypically divergent cells, I will characterize selected targets using biochemical and molecular biology tools.

Five of Europe’s most talented researchers presented as Swedish Foundations’ Starting Grant Fellows 2015

Department of Chemistry and Molecular Biology, University of Gothenburg
Funded by: Ragnar Söderberg foundation
SFSG Fellow in 2015, ERC StG awarded starting from 2018
The research project aims to master the energy pathways in electronically excited molecules. Doing so is of fundamental importance in lighting technologies, which today consumes around 20% of all produced electricity in the world. In a modern lighting device such as a mobile phone screen, electricity is used to create electronically excited molecular states. We will develop molecular systems enabling the conversion of these excited states into light as efficient and fast as possible. Thus facilitating for a new generation of energy efficient lighting devices.

Department of Physics and Astronomy, Uppsala University
Funded by: Ragnar Söderberg foundation
My research strives towards obtaining better mathematical descriptions for high-energy collisions (scattering amplitudes) between elementary particles or even strings. New mathematical formulations of fundamental processes can lead to a better understanding of the theories that describe our universe: e.g. the theory of gravity and other established theories known as gauge theories — describing the strong and electroweak forces of the Standard Model of particle physics. By studying the mathematical details of scattering amplitudes in these theories, I have found that there exists an underlying Lie algebra that controls the kinematical variables. However, as of today, no complete mathematical description of this algebra is known. A goal of my research is to find this complete description.

Joan Yuan, foto:

Department of Molecular Hematology, Lund University
Funded by:Familjen Erling-Perssons stiftelse
SFSG Fellow in 2015, ERC StG awarded starting from 2017
The vertebrate immune system has evolved for hundreds of millions of years into a balanced and self-regulatory system encompassing a wide spectrum of cell types that act in concert to protect us from infections. Most of what we know about the formation of the immune system comes from studies in adults but much less is known about the coordinated series of events that build up the immune system from scratch in the developing fetus. Mutations occurring before birth in immune cells of the developing baby remain the main cause of cancer related deaths in children. Cancers of the immune system, leukemia, are furthermore of different kinds in infants and children compared to adults. These and other clues suggest that fetal immune development may be significantly different from that in adults. In the project FatemapB, we will use two advanced tracking technologies to follow the behavior of fetal and adult immune cell development. The state-of-the-art strategies will allow for the high-resolution visualization of how a diverse immune system is first formed in the fetus and then maintained throughout adulthood. Extending beyond normal development, this work has important clinical implications to improve our understanding of fetal specific leukemia. Finally, we have developed a technology to reinitiate fetal like immune development in adult blood stem cells and will within the scope of FatemapB explore the ability of this technology to improve immune regeneration following bone marrow transplantation treatments.

OKSANA MONT (Consolidator grant)
International Institute for Industrial Environmental Economics, Lund University
Funded by: Riksbankens Jubileumsfond
Urban sharing of assets, spaces and skills has emerged as a prospective solution to sustainability challenges faced by cities. However, its sustainability potential and institutional processes to harness it have not been systematically scrutinized. This ambitious research programme aims to examine, test and advance knowledge about design, sustainability of practices and institutionalisation processes of urban sharing organisations across 8 cities from 5 continents. The research conflates studies on sustainable consumption and production with organisational theory and the neo-institutional field.The three objectives are: 1. Design: To examine the ways in which urban sharing schemes are designed and how they vary across cities. 2. Practices: To study the sustainability of daily practices of urban sharing schemes and why and how they vary in different cities. 3. Processes: To develop and test a theoretical framework for integrative and comparative assessment of institutionalisation processes of urban sharing schemes across cities.

Alberto Vomiero, foto: Ted karlsson

ALBERTO VOMIERO (Consolidator grant)
Department of Engineering Sciences and Mathematics, Luleå University of Technology
Funded by: Kempestiftelserna
Exploiting solar light is one of the main challenges that could significantly contribute to solve the present world energy issues. The photovoltaic and the thermoelectric effects are among the most promising. The photovoltaic effect directly generates electric power after absorbing solar light, and the thermoelectric effect indirectly generates electric power after absorbing heat from the Sun. The project aims at investigating a new way to exploit solar radiation, by combining the photovoltaic and thermoelectric effects using nanowire arrays (very similar to a miniaturized grassland). The idea is to absorb both the visible and the infrared part of the solar spectrum (which we cannot see with our eyes, but still is there) using a composite nanostructure. In our scheme, the two processes will occur simultaneously, improving the efficiency of the conversion from light to electric power, towards a “panchromatic” absorption of Sun light. The project is based on the very peculiar optical and electrical characteristics of materials at nanoscale, organized in arrays of nanowires. We aim at solving the intrinsic limitations of the photovoltaic and thermoelectric processes: poor matching between the absorption properties of solar cells and the different “colors” forming the full spectrum of the Sunlight, and the low density of electric charges in thermoelectric devices.