Department of Physics, Lund University
project title

Single Molecule Analysis in Nanoscale Reaction Chambers

funded by

Olle Engkvists stiftelse

In this project I will develop ultra-high resolution X-ray detectors based on semiconductor nanowires, whose spatial resolution will be radically better than the current state of the art.

In X-ray detectors the primary X-ray absorption induces a cascade of secondary electrons and photons, which are measured at the front or back of the detector, but during the long transport to the point of detection these can spread orthogonally to the optical axis. This limits the resolution in present bulk detectors.


My novel concept is to create a nanostructured detector based on an array of semiconductor nanowires, which will confine and physically prevent spreading of the secondary electrons and photons. In a nanowire array, the pixel size is the diameter of the nanowire, which can be as low as 10 nm, while the nanowires can be as long as the X-ray absorption length. The very high aspect ratio of nanowires allows detectors with simultaneously very high spatial resolution and sensitivity. I will investigate both direct detectors and scintillators, in which the secondary electrons and photons are detected, respectively.


The objective is to create detectors based on arrays of 10 nm-diameter nanowires. Imaging experiments will compare these two types with each other and with commercial detectors. Time- and temperature resolved measurements will be used to improve understanding of the X-ray physics in these nanodevices, with strong quantum confinement of electrons and phonons and high surface to volume ratio. This novel detector concept can be used for high-resolution imaging of samples on the nanoscale, maintaining the unique ability of X-rays to study samples in realistic conditions: DNA within live cells, the strained channel in single operational transistors or individual nanoparticles in a charging battery. High resolution detectors could also be employed in X-ray spectroscopy and diffraction.


Awarded an ERC Starting Grant in 2018.

April 2017

Meet the SFSG fellows

See all